Optimal design of a four bar mechanism for forestry robotic applications

Omar Mendoza-Trejo Daniel Ortíz Morales Pedro La Hera

Swedish University of Agricultural Sciences, SBT Department
Umeå, Sweden

Rotorua, New Zealand, 2018
In many countries, forestry machines are the primary industrial tool to extract wood out of forests.

The scientific and technological development to improve forestry machines has increased over the past years.
Optimal design
of a four bar
mechanism for
forestry
robotic
applications

Introduction

Design Methods

Conventional Design Method

Optimal Design Method
In general, an optimization problem can be stated as follows:

\[
\min_{\chi} \bar{J}_i(X, t), \quad i = 1, \ldots, n
\]

(1)

subject to:

\[
\dot{x} = \frac{dx}{dt} = f(x, t)
\]

\[
g_{d_j}(X, t) < 0, \quad j = 1, \ldots, n_{gd}
\]

\[
h_{d_k}(X, t) = 0, \quad k = 1, \ldots, n_{hd}
\]

(2)
Optimal design of a four bar mechanism for forestry robotic applications

Factors to take into account:

- The maximum and minimum desired range of motion such that the joint achieves its maximum range when the cylinder's stroke is fully extended and vice versa.
- How we intend to place the cylinder in the crane.
- How to achieve these goals using the minimum amount of components.
Optimal design of a four bar mechanism for forestry robotic applications

Optimal design of a four bar mechanism

Min \[(D_{ip} - R_{ip})^2 + (D_{fp} - R_{fp})^2\] (3)

subject to:

\[g_{sj}(X) < 0, \quad j = 1, \ldots, n_{gs}\]
\[h_{sk}(X) = 0, \quad k = 1, \ldots, n_{hs}\] (4)
Thank you!